
Year 2015
1. Saurabh Porwal and M.V. Singh, Convolution on a certain class of harmonic univalent functions, J. Ind. Math. Soc., 82(12), (2015),117127.
2. Saurabh Porwal, Some Properties of a subclass of Harmonic Univalent Functions defined by fractional calculus, Thai J. Math., Art. In Press, 2015.
3. Saurabh Porwal and Moin Ahmad, Some sufficient conditions for generalized Bessel functions associated with conic regions, Vietnam J. Math., 43(1)(2015),163172.
4. Dharmendra Kumar Singh and Omendra Mishra, Integral Involving Hbar function, Act Universitatis Apulensis, 2015.
5. Dharmendra Kumar Singh, On extended hypergeometric function, Thai Journal of Mathematics, 2015.
Year 2014
1. Saurabh Porwal, Convolution properties of a subclass of analytic Univalent Functions, ISRN Mathematical Analysis, Vol. 2014, Art. ID 190898, 14.
2.Saurabh Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal., Vol.(2014), Art. ID 984135, 13.
3. Saurabh Porwal, Harmonic Starlikeness and Convexity of integral operators generated by generalized Bessel functions, Acta Mathematica Vietnamica, 39(2014), 337346.
4. N. Magesh, Saurabh Porwal and V. Prameela, Harmonic uniformly $\beta$starlike functions complex order defined by convolution and integral convolution, Studia Univ. BabesBolayi, 59(2)(2014), 177190.
5. Poonam Sharma, Saurabh Porwal and Alka Kanujia, A generalized class of harmonic univalent functions associated with Salagean operators involving convolutions, Acta Univ. Appl. (39)(2014), 99111.
6. Saurabh Porwal, K.K. Dixit, A.L. Pathak and R. Tripathi, A unified study of certain subclasses of $\alpha$uniformly convex functions of order $\beta$ with negative coefficients, Gulf J. Math., 2(4) (2014), 94105.
7. Saurabh Porwal and Manoj Kumar Singh, Mapping properties of some classes of analytic function under a general integral operator defined by the Hadamard product. LeMathematiche Vol. LXIX (2014), .
8. Saurabh Porwal and Alka Kanujia, On a certain class of harmonic univalent functions defined by fractional calculus, Gulf J. Math., 2(3) (2014), 5970.
Year 2013
1. B.A. Frasin, N. Magesh and Saurabh Porwal, Univalence criteria for general integral operator, Analele Universitatii Oradea Fasc. Matematica, Tom XX (2013), Issue No. 1, 153164.
2. Saurabh Porwal and K.K. Dixit, Partial Sums of harmonic Univalent Functions, Studia Univ. Babes Bolayi, 58(1) (2013), 1521.
3. Saurabh Porwal and K.K. Dixit, Some Properties of Generalized Convolution of Harmonic Univalent Functions, Demonstratio Math., 46(1), (2013), 6374.
4. K.K. Dixt, Saurabh Porwal and Ankit Dixit, 111Equation Chapter 1 Section 1A new subclass of univalent functions with positive coefficients, Bessel J. Math., 3(2), (2013), 125135.
5. Saurabh Porwal and K.K. Dixit, On a certain class of analytic functions, Studia univ. Babes Bolayi, 58(2), (2013), 159164.
6. A.K. Sharma, Saurabh Porwal and K.K. Dixit, Class Mappings Properties of Convolutions Involving Certain Univalent Functions Associated with Hypergeometric Functions, Electronic Journal of Mathematical Analysis and Applications, 1(2), (2013), 326333
7. Saurabh Porwal, Mapping properties of generalized bessel functions on some subclasses of univalent functions, Analele Universitatii Oradea Fasc. Matematica, XX(2013), No. 2, 5160.
8. Dharmendra Kumar Singh, On extended Mseries, Malaya Journal of Matematik, Vol. 1, 5769, 2013.
9. Dharmendra Kumar Singh and S. Porwal, On incomplete MittagLeffler function, Acta Universitatis Apulensis Vol, 34(2), 151162, 2013.
10. Dharmendra Kumar Singh and Rahul Rawat, Integrals involving generalized MittagLeffler function, Journal of fractional calculus and Applications, Vol. 4(2), 234244, 2013.
11. Saurabh Porwal, B.A. Frasin and Ajay Singh, Partial sums of certain integral operator on harmonic univalent functions, Analele Universitatii Oradea Fasc. Matematica,XX(2013), No. 2, 145152.
12. K.K. Dixit, S.K. Ghai and Saurabh Porwal, On a subclass of analytic function with negative coefficients defined by generalized Salagean operator, J. Raj. Acad. Phy. Sci., 12(2), (2013), 151166.
13. Saurabh Porwal and M.K. Aouf, On a new subclass of harmonic univalent functions defined by fractional calculus operator, J. Frac. Calc.Appl., (Egypt), 4(2013), No. 10, 112.
14. Saurabh Porwal and M. Darus, On a new subclass of Biunivalent functions, J. Egypt. Math. Soc., , 4(2013), No. 10, 112.
15. Saurabh Porwal and Ajay Singh, Partial sums of generalized class of harmonic univalent functions involving a Gaussian hypergeometric function, Acta Universitis Appulensis, 33(2013), 5370.
Year 2012
1. Saurabh Porwal and M.K. Aouf, On a certain integral operator, Kyungpook Math. J., 52(1), (2012), 2132.
2. Saurabh Porwal, K.K. Dixit and S.L. Shukla, On Generalizations of QuasiHadamard products of pvalent functions, Int. J. Open Problems Complex Analysis, 4(2), (2012), 5661.
3. Manoj Kumar Singh et al., On four dimensional S3 like Finsler spaces with Nonzero constant unified main scalar. Rajasthan Academy of Physical Sciences,Vol.11(4)2012
4. A. L. Pathak, S. Porwal, R. Agarwal and R. Misra, A subclass of harmonic univalent functions with positive coefficients associated with fractional calculus operator, J. Nar Anal. Appl., (2012), Article ID jnaa00108, 11 Pages.
5. Saurabh Porwal, Poonam Dixit and Vinod Kumar, A new subclass of harmonic univalent functions defined by convolution , Antarctica J. Math., 9(5)(2012), 425436.
6. Saurabh Porwal, K. K. Dixit, A. L. Pathak and R. Tripathi, On a new subclass of harmonic univalent functions defined by generalized Salagean operator, Int. J. Math. Arch., 3(7) (2012), 28272835.
7. Saurabh Porwal, Ankit Dixit, Avinash Kumar and S.K. Ghai,Salageantype harmonic univalent functions with fixed points, Int. J. Math. Arch., 3(7) (2012), 27552764.
8. N. Magesh and Saurabh Porwal, Harmonic Uniformly $\beta$Starlike Functions Harmonic uniformly $\beta$starlike functions defined by convolution and integral convolution, Acta Univ. Appul., 32(2012), 129141.
9. Shyam Lal, M.V. Singh and Saurabh Porwal, A note on uniform matrix summability, Int. J. Math. Arch., 3(1) (2012), 233239.
10. Saurabh Porwal, K.K. Dixit, A.L. Pathak and R. Agarwal, A subclass of harmonic univalent functions with positive coefficients defined by generalized Salagean Operator, J. Raj. Acad. Phy. Sci., 11(2)(2012), 93102.
11. Saurabh Porwal and K.K. Dixit, On a new subclass of Salageantype harmonic univalent functions, Ind. J. Math., 54(2), (2012), 199210.
12. Saurabh Porwal and K.K. Dixit, A note on convolution of analytic functions, Bulletin of Allahabad Mathematical Society, Allahabad, (India), 27(2012), 219225.
Year 2011
1. Saurabh Porwal, Partial Sums of Certain Harmonic Univalent Functions, Lobachevskii J. Math., 32(4), (2011), 366–375.
2. Saurabh Porwal, Mapping Properties of an integral Operator, Acta Universitatis Apulensis,(Romania), 27, (2011), 151155.
3. Saurabh Porwal and K.K. Dixit, An application of Salagean Derivative on partial sums of certain analytic and univalent functions, Acta Universitatis Apulensis,(Romania), 26 (2011), 7582.
4. Saurabh Porwal, K.K. Dixit and S.B. Joshi, Convolution of Salageantype Harmonic Univalent Functions, Punjab University J. Math., (Pakistan), 43 (2011) 6973.
5. Saurabh Porwal, Vinod Kumar and Poonam Dixit, On a certain class of harmonic multivalent functions, J. Nar Sci. Appl., 4(2) (2011), 170179.
6. Saurabh Porwal, K.K. Dixit and M. Darus, Univalence criteria for a family of integral operators, Acta Universitatis Apulensis, 26(2011), 143148.
7. Saurabh Porwal, K.K. Dixit, Vinod Kumar and Poonam Dixit, On a subclass of analytic functions defined by convolution, General Mathematics, 19(3), (2011), 5765.
8. K.K. Dixit, A.L. Pathak, S. Porwal and R. Agrawal, On a new Subclass of harmonic univalent functions defined by convolution and integral convolution, International J. Pure Appl. Math., 69(3) (2011), 255264.
9. K.K. Dixit, A.L. Pathak, S. Porwal and S.B. Joshi, A family of harmonic univalent functions associated with convolution operator, Mathematica (Cluj), Romania, 53(76) (1), (2011), 3544.
10.K.K. Dixit and Saurabh Porwal, A new subclass of harmonic univalent functions defined by Fractional Calculus, General Mathematics, Romania, 19(2) (2011), 8189.
Year 2010
1. Manoj Kumar Singh et al., On four dimensional Finsler space satisfying Tconditions. Journal of tensor society of India vol. 4 (2010) .
2. Saurabh Porwal and K.K. Dixit, Partial sums of starlike harmonic univalent functions, Kyungpook Mathmatical Journal, Korea, 50(3) (2010), 433445.
3. Saurabh Porwal and K.K. Dixit, An Application of Hypergeometric Functions on Harmonic Univalent Functions, Bulletin of Mathematical Analysis and Applications, Korea, Vol. 2(4), (2010), 97105.
4. K.K. Dixit and S. Porwal, Convolution of the subclass of Salageantype harmonic univalent functions with negative coefficients, General Math., 18(3), (2010), 5964.
5. K.K. Dixit and Saurabh Porwal, A subclass of harmonic univalent functions with positive coefficients, Tamkang J. Math., 41(3) (2010), 261269.
6. Saurabh Porwal and K.K. Dixit, An application of certain convolution operator involving hypergeometric functions, Journal of Rajasthan Academy Physical Sciences, India, Vol. 9 (2) (2010), 173186.
7. Saurabh Porwal, Vinod Kumar and Poonam Dixit, A unified presentation of harmonic univalent funtions, Fareast Journal of Mathematical Sciences, India , 47 (1) (2010), 2332.
8. Saurabh Porwal, K.K. Dixit, Vinod Kumar, A.L. Pathak and P. Dixit, (2010), A new subclass of harmonic univalent functions defined by DziokSrivastava Operator, Advance in Theoritical and Applied Mathematics, India, Vol. 5 (1), 109119. [].
9. K.K. Dixit and Saurabh Porwal, An application of fractional calculus to harmonic univalent functions, Bulletin of Calcutta Mathematical Society, India, Vol. 102 (4) (2010), 343352.
10. Shyam Lal, M.V. Singh and Saurabh Porwal, Approximation of functions by Lipscitiz Class, Journal of Rajasthan Academy Physical Sciences, India, 9 (3), (2010).
11. Vinod Kumar, Saurabh Porwal and Poonam Dixit, A New subclass of harmonic univalent functions defined by fractional calculus, Indian Journal of Mathematics, India, Vol. 52 (3) (2010), 599613
12. K.K. Dixit, Vinod Kumar, Saurabh Porwal and Poonam Dixit, On a Subclass of Certain Analytic Functions, Journal of Rajasthan Academy of Physical Sciences, India, 9 (3) (2010), 333343.
13. Lal Sahab Singh and Dharmendra Kumar Singh, Fractional Calculus for the function, Tamkang Journal of Mathematics, Taiwan, Vol. 41, No.2, 181194, 2010.
Year 2009
1. K.K. Dixit and Saurabh Porwal, A convolution approach on partial sums of certain analytic and univalent functions, J. Ineq. Pure Appl. Math., Australia, 10 (4), Article 101, 19.
2. Manoj Kumar Singh et al., On Quasi Creducible Finsler space. Bull. Cult. Math. Soct. Vol. 101 (2009)
3. Manoj Kumar Singh et al., On four dimensional Quasicreducible Landsberg space. Bull. Cult. Math. Soct. Vol. 101 (2009)
4. Manoj Kumar Singh et al., Three dimensional conformally flat Landsberg and Berwald space. International academy of physical sciences vol.13 (2009).
5. Manoj Kumar Singh et al., On four dimensional S3 like Finsler spaces. Journal of progressive sciences vol. 1 (2009).
6. K.K. Dixit and Saurabh Porwal, Some properties of harmonic functions defined by convolution, Kyungpook Mathmatical Journal, Korea, 49(2009), 751761, [].
7. K.K. Dixit and Saurabh Porwal, On a subclass of harmonic univalent functions, J. Ineq. Pure Appl. Math., Australia, Vol. 10(1) (2009), Article 27, 118, [].
8. K.K. Dixit, A.L. Pathak, S. Porwal and R. Agrawal, A New subclass of harmonic univalent functions defined by Salagean Operator, International Journal of Contemporary Mathematical Sciences, Bulgaria, Vol. 4 (8), 371383, [].
9. K.K. Dixit and Saurabh Porwal, Salageantype harmonic univalent functions with negative coefficients, Journal of Rajasthan Academy of Physical Sciences, India, Vol. 8 (2) (2009), 147158.
Year 2008
1. K.K. Dixit and Saurabh Porwal, On a certain class of kuniformly convex functions with negative coefficients, Bulletin of Calcutta Mathematical Society, India, 100 (6) (2008), 639652.
2. K.K. Dixit and Saurabh Porwal, Harmonic univalent functions with fixed point and negative coefficients, Ultra Science, India, 20(3) M (2008), 801806.
Year 2006
1. Lal Sahab Singh and Dharmendra Kumar Singh, Saigo operator of fractional integration involving the Gauss hypergeometric functions, Act Ciencia Indica, Vol. XXXIIM, No.1, 427434 (2006) India.
2. Lal Sahab Singh and Dharmendra Kumar Singh, Saigo operator of fractional integration involving the product of two hypergeometric functions, Acta Ciencia Indica, Vol. XXXIIM, No.3, 10671072 (2006) India.